基本仕様

動作環境	OS: Windows 11 CPU: 1GHz 以上 メモリ: 512MB 以上 ハードディスク: 3GB 以上の空き容量(4.8 以前のバージョンは 1GB 以上) 画面解像度: 1,366×768 以上 USB ポート: USB 1.1 以上	
気象データ	内蔵データ	海外1,360ヶ所、METPV-20、他
	読込対応	実測データ、meteonormデータ(7.1以前)、SolarGIS(TMYデータ)
		NSRDB(SUNY 10-km グリッドデータ)、TMY3データ、METPV-11、他
太陽電池および回路構成	対応種別	フルセル、ハーフセル
		単結晶、多結晶、アモルファス、ハイブリッド、HIT、CIS、CIGS
	PCS台数	最大400台
	モジュール枚数	最大160,000枚
	最大直並列数	対応モジュール枚数内で無制限
作成可能物体	太陽電池アレイ(1アレイあたりの最大モジュール数 1,000 枚)、家屋、ビル、斜面、太陽電池設置区画、角柱、角錐、角錐台、 任意形状、樹木、多面体	

ソフトウェア内部で使用されている計算式をまとめた技術資料もご用意しております。

アップデートファイルはラプラス・システム公式WEBサイトで、随時公開しています。 https://www.lapsys.co.jp/support/

トライアルダウンロード版を30日間無償でお試しいただけます。 https://downloads.laplaceweb.com/ja/pro

※トライアル版では一部機能が制限されています

株式会社 ラプラス・システム

【 本 社 】〒612-8083 京都市伏見区京町 1-245 TEL:075-604-4731 FAX:075-621-3665

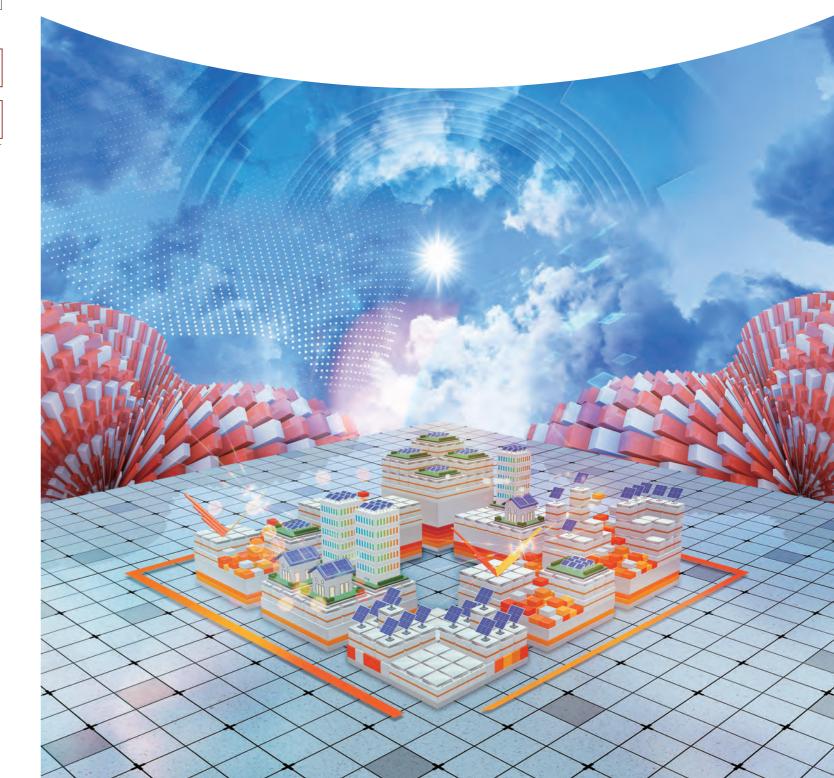
【東京支店】〒160-0022 東京都新宿区新宿 2-3-10 新宿御苑ビル4階 TEL:03-6457-8026 FAX:03-6457-8027

【札幌営業所】 〒001-0010 北海道札幌市北区北 10 条西 1-10-1 MCビル 5 階 TEL:050-3150-1337 FAX:011-299-1778 【仙台営業所】 〒980-0014 宮城県仙台市青葉区本町 2-1-7 本町奥田ビル 9 階 TEL:022-216-5060 FAX:022-216-5061 【高崎営業所】 〒370-0058 群馬県高崎市九蔵町 25-1 WESTINI 5 階 TEL:027-333-1851 FAX:027-333-1852 【金沢営業所】 〒920-0869 石川県金沢市上堤町 2-37 金沢三栄ビル 9 階 TEL:050-3150-1487 FAX:076-213-6376 【名古屋営業所】 〒460-0008 愛知県名古屋市中区栄 1-22-16 ミナミ栄ビル 3 階 TEL:052-747-6114 FAX:052-747-6115 【広島営業所】 〒730-0013 広島県広島市中区八丁堀 11-8 エフスペース八丁堀ビル 6 階 TEL:050-3149-1625 FAX:082-836-3201 【福岡営業所】 〒812-0013 福岡県福岡市博多区博多駅東 1-13-9 いちご博多駅東ビル 4 階 TEL:092-477-2130 FAX:092-477-2077

コールセンター TEL:075-634-8073

受付時間:平日 9:00~19:00/土曜 9:00~17:30 日曜、祝日、年末年始は休業いたします。

このカタログの記載内容は2025年6月現在のものです。仕様は予告なく変更される場合があります。



太陽光発電システム シミュレーションソフトウェア

Solat-Pro-

世界が認めた高精度のシミュレーションソフトウェア

本格的シミュレーションソフト

1997 年、世界に先駆けて発売された本格的シミュレーションソフト Solar Pro。 一枚一枚のモジュールに及ぶ日射や影の影響が考慮された瞬時値の積算により、 高精度の発電電力量計算を実現しています。

世界が認めた最先端技術

2001年、独太陽光発電専門誌 "PHOTON"より、最先端のシミュレーションソフトとして紹介され、その後も絶え間なく改良を重ねてまいりました。 以降 Solar Proは世界で広く利用されてきました。

太陽光発電普及への貢献

Solar Proの高い技術と太陽光発電の普及への貢献は、数多くの公的機関から高く評価されています。2003年には京都中小企業優秀技術賞を受賞、その他、中小企業創造活動促進法認定事業やオスカー認定企業にも選出されました。

簡単な作図機能で 複雑なシステム設計に対応

平置きや壁面設置などの配置方法や、追尾型やメガソーラーなどのシステムに幅広く対応。さらに、太陽電池アレイの傾きを前後左右自由に調整でき、屋根の傾きと異なる方へ向けたり、入り組んだ場所に配置した場合のシミュレーションも可能です。

影の影響を考慮した 精緻なシミュレーション

モジュールに部分的に影がかかると、ストリング全体の発電能力が下がり、システムの発電量が著しく低下します。 Solar Pro なら、モジュール単位での影の影響を考慮して正確なシミュレーションを行います。

光害を未然に防止する 反射光シミュレーション

SE STATE

LECTUR (1919) **LECTUR** (1919)

太陽電池パネルの反射光のまぶしさが社会問題となり、パネル設置方法の検討の際に、反射光への考慮が不可欠となりました。Solar Proでは季節や時間帯を指定して、反射光が周辺にどのように影響するかを把握できます。

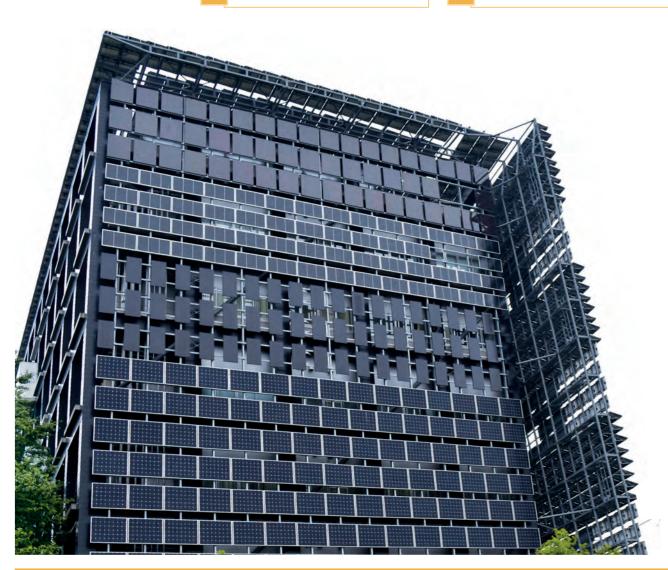
世界初! 両面モジュールの 3Dシミュレーション

実証実験風景

反射光を 3D で再現し、両面モジュールを使用した際の反射物や 地面からの反射光の発電への影響を含めた正確な計算ができま す。また、反射光(鏡面反射)の複数回反射を再現し、地面や 壁などからの最大 2 段階までの反射光シミュレーションも可能です。

※両面モジュールの裏面にあたる反射光が発電電力量に与える影響を3次元的に再現する機能が世界初世界の主要な太陽光発電シミュレーションソフトウェアをインターネットを通じて調査(2024年11月27日時点、ラブラス・システム調べ)

Solar Pro は法人・事業者様向けの太陽光発電システムのシミュレーションソフトウェアで


Solar Proの活用例

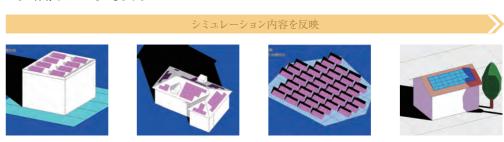
■太陽電池パネルの柔軟な配置設計

シミュレーションソフトの多くは、太陽電池パネルの設置方法や設置角度などに制約があります。Solar Proでは、建物の壁全面や入り組んだ傾斜地でのパネル配置など、あらゆる配置パターンでのシミュレーションが可能です。

例えばこんな複雑な設計も…

- 壁全体にパネルを配置
- 3 パネルの角度を少しずつ変えて配置
- 2 6種類のパネルを配置
- 4 周囲に反射光が当たらない配置

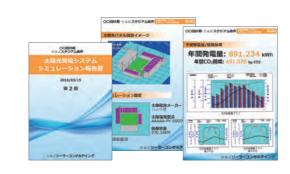
Solar Proだからできる!


- 1 パネルの枚数や設置方向、ピッチなどを設定し、無数 のパネルで壁を埋め尽くすように設計する。
- 3 パネルごとに傾斜角を細かく設定し、それぞれのパネル が太陽光により長く当たるように設計する。
- **2** それぞれのパネルの特性を考慮し、発電量が最大となるように設計する。
- 反射光の表示や軌跡を3D CAD画面上で確認し、周囲の建物や交通機関などに配慮する。

販促·営業活動

Solar Pro はシミュレーションを行うだけでなく、設計した設備のコストを見積書にまとめたり、導き出した結果を用いてオリジナルレポートを作成することもできます。

見積書作成


データベースに単価を登録することで、設備機器の合計金額を反映した見積書の作成が可能です。項目設定など、よく使用するパターンをテンプレートとして保存することもできます。

オリジナルレポート作成

詳細なシミュレーション結果から、グラフや帳票を自在に配置してオリジナルレポートを作成できます。



■教育·研究

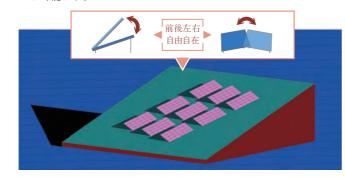
さまざまなパターンでの正確なシミュレーションが可能な Solar Pro は、太陽光発電の研究・教育用途にも最適です。影や反射光の動きをアニメーションで確認できるなど、専門的なシステム設計を分かりやすく学ぶことができます。

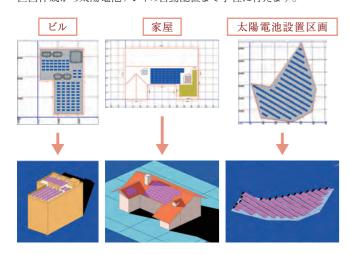
反射光の動きをアニメーションで確認

- 3 -

| 充実の設計支援機能

地図読み込み機能


住所から任意の地点の地図を表示させ、「取り込み」ボタンを押すと 3D CAD 画面に地図画像が表示されます。地図の画像ファイルは不要で簡単 に設計できます。

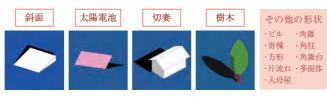

太陽電池アレイの傾斜バリエーション

太陽電池アレイの傾斜を前後だけでなく、左右にも調整できます。 屋根の傾きと異なる方へ向けたり、入り組んだ場所でのシミュレーショ ンが可能です。

伏図入力機能

建物作成からモジュール配置まで効率的に行うことができ、複雑な設 置環境でも簡単に設定可能。メガソーラーなどの地面設置の設備でも、 区画作成から太陽電池アレイの自動配置まで手軽に行えます。

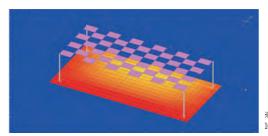
最適設計


アレイの設置方位角やパネルの角度、アレイ間の距離を変化させなが らシミュレーションし、年間・日間発電量が最大となるように設計。パ ラメータ毎の最適化を実現し、より効率の良い設計へと導きます。

入力形状の選択

実際の建物のイメージに近い形状を選択して設置可能。3D CAD画面 上で建物の移動や複製、削除ができます。インスペクタ機能を利用し、 選択した建物の形状や位置、色を調整できます。

写真からの建物モデル作成「先行体験機能」


シミュレーション対象の建物の写真をもとに、3D CAD上に建物モデル を自動作成できます。※現在、精度向上に取り組んでいます。

入力ウィザード

太陽光発電や建築などの知識がなくても、誰でも簡単に大まかなシミュレー ションを行える機能。入力後に、物体の設定を変更することも可能です。

ソーラーシェアリング対応

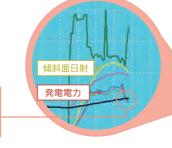
発電設備の下の日射量が 3D CAD 上で色分けして表示され、ソーラー シェアリングに適した作物を選定する際の参考にすることができます。 また、ソーラーシェアリングの申請に必要な遮光率も算出できます。

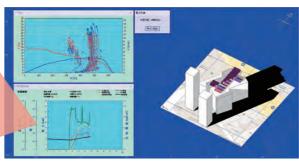
※散乱光は常に 100%としています。

片流れ・多面体

■多彩な表示機能

影アニメーション

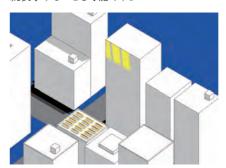

地点情報(緯度・経度)および時刻情報(月日・時刻)を入力すれば、その 地点・時刻の影を表示できます。1日の影の動きの連続動画表示も可能です。


影軌跡図

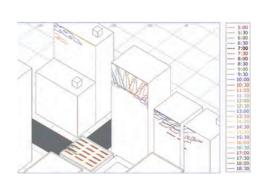
任意の時間間隔の指定で、影の軌跡を表示できます。建物の影が複雑に 重なり合う場合も、時刻毎の影の様子を詳細に把握できます。

影アニメーションと連動したグラフ表示

影アニメーションと発電量グラフを連動して表 示できます。その様に表示させることで、影が 発電量に及ぼす影響をひと目で確認できます。



影がかかったタイミングで、発 電電力が日射強度に対して低 下しているのがわかります。


反射光アニメーション

地点情報(緯度・経度)および時刻情報(月日・時刻)を入力すれば、 その地点・時刻での反射光を表示できます。1日の反射光の動きを連 続表示することも可能です。

反射光軌跡図

任意の時間間隔の指定で、反射光の軌跡を表示できます。反射光が 周辺に及ぼす影響を、時刻毎に詳細に把握できます。

画像·動画出力

影や反射光のシミュレーション結果を画像や動画で出力でき、動画に タイトルやコメントを設定することも可能。パソコンやスマートフォン、 タブレットでもシミュレーション結果を確認できるので、プレゼンや PR にも最適です。

表示・非表示切り替え

影・反射光を非表示にすることで負荷 を軽減し、表示速度を向上。シミュレー ションでは非表示状態でも影・反射 光を考慮した結果が反映されます。

■精度を高める豊富なデータベース

気象データベース

各種国内気象データベースに対応。国内837地点、海外1360地点の気象データを利用しています。

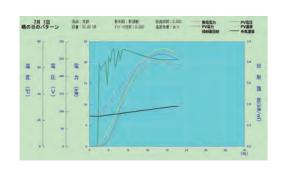
太陽電池データベース

当社が独自に収集したデータを内蔵。メーカー数100社以上、型式1000種以上のデータを取り扱っています。

PCSデータベース

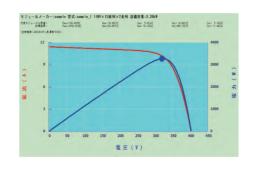
国内ほぼすべてのPCSメーカーに対応しており、それらのPCS型式名などのデータを内蔵しています。

- 5 -

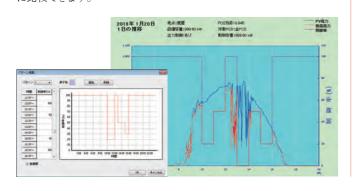

- 6 -

機能紹介

■瞬時値に基づく精度の高い計算で発電量を予測


瞬時計算での積算

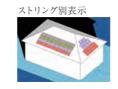
発電電力量は年間の積算日射量からの計算ではなく、瞬時の計算を 積み重ねることで、根拠のある精度の高い計算が可能となります。追尾 型や、アーチ型など、特殊なシステムにも対応します。


I-V特性グラフの算出

太陽光発電システムのモジュールごとの電流方程式を合成し、一つの回路として計算することで、各モジュールの回路的な連係を考慮した、より正確な IV カーブを表示します。影のかかり方の違いによる IV カーブの変化を比較すれば、システムがより効率的に動作するように設計できます。

出力制御シミュレーション

1日毎、時間帯毎の制御パターンを登録すれば、出力制御時の発電量のシミュレーションが可能に。出力制御あり・なしの場合の発電量を簡単に比較できます。



モジュール結線設定

太陽電池アレイ内のモジュールの結線パターンを任意で設定でき、さらに3D CAD上で PCS・ストリング別に表示できます(複数アレイにまたがる結線も可能)。複数 PCS にも対応しています。

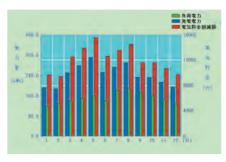
モジュール結線と影パターンの連動

モジュールの結線の任意設定によって、影の影響を受けにくい結線の設計が可能です。下図のように同じ様に影がかかる場合でも、モジュール結線の方法によって発電効率は大きく異なります。

- 7 -

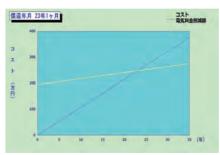
■シミュレーション結果から経済性を多面的にPR

各種設定

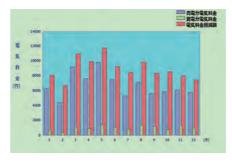

システムにかかる初期コストと運用コストを入力し、コスト償還の期間を算出します。

『力料金プラン 家庭用から産業用まで、日本国内の各電力会社のさまざまな電気料金プランの中から選択できます。

「雷力 各月の負荷電力量を入力し、電気料金プランと負荷電力量から、その月にかかるおおよその電気料金を算出します。


発電電力量,負荷電力量

月別の発電電力量と負荷電力量をグラフで表示します。また太陽光発電システムの導入効果としての電気料金削減額も確認できます。

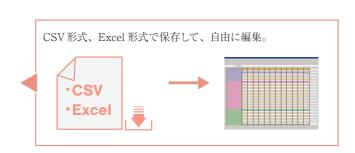

経年劣化を考慮したコスト償還の推移

電気料金削減額の累積金額とシステムにかかる初期コスト・運用コスト の推移を表示します。またコスト償還にかかる年月も確認できます。

売買電気料金の比較

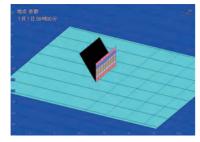
月別の売電・買電の各電気料金や電気料金削減額をグラフで表示します。

全量・余剰買取制度に対応した経済性計算


あらかじめ設定した電気料金プランや売買電単価等を反映し、 全量・余剰買取制度に対応した経済性計算を行います。

帳票

発電電力量・発電電力量(定格比)・負荷電力量・電気料金削減額・売電分電気料金・買電分電気料金を表示します。 15 分・30 分・60 分での集計ができ、CSV形式、Excel 形式での保存が可能です。

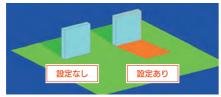


- 8 -

機能紹介

■両面モジュール対応

両面モジュール使用時の発電量シミュレーションが可能。 反射物や地面からの反射光の発電への影響を含めた、 正確な計算ができるようなりました。

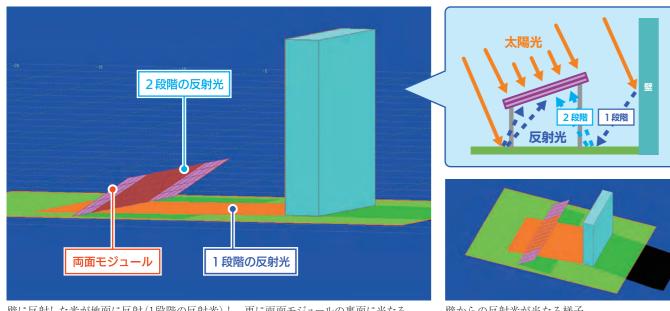


裏面係数

裏面係数を任意で設定、 モジュールごとに異なる設定が可能

オブジェクトの反射設定

オブジェクトの面に反射光の設定が可能


反射率

物体によって異なる反射率を設定し、 よりリアルな計算が可能

2段階までの反射に対応したシミュレーション

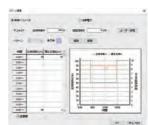
反射光(鏡面反射)の複数回反射を再現。地面や壁などからの最大2段階までの反射光シミュレーションに対応します。

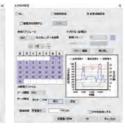
壁に反射した光が地面に反射(1段階の反射光)し、更に両面モジュールの裏面に当たる (2段階の反射光)シミュレーションが可能。2段階の反射光は濃い色で表現されます。

壁からの反射光が当たる様子

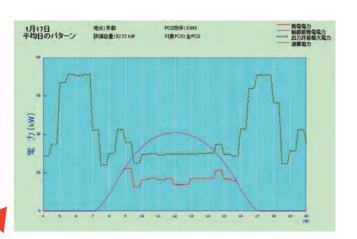
オプティマイザ対応

1-2 枚のモジュールに 1 台接続し、出力を最大効率化する 「オプティマイザ」を用いた発電計算が可能です。

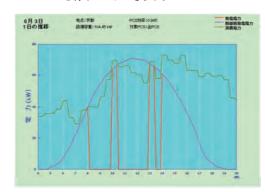



■自家消費発電制御のシミュレーション

自家消費発電シミュレーション

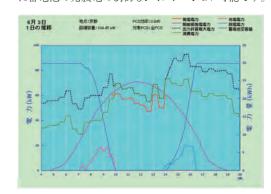

自家消費型太陽光発電向け自動出力制御システム Solar Legato での 制御アルゴリズムを Solar Pro の発電量計算にも適用し、Solar Legato 導入の効果をシミュレーションしていただけます。

また、消費電力を踏まえた計算が、消費電力量(kWh)のデータや、 1か月間の合計電力量、15分、30分、60分単位の消費電力を用い た計算に対応。消費電力データ (CSV 形式) での入力にも対応して



逆潮流発生シミュレーション

発電量が消費電力を上回り、逆潮流が発生すると発電設備が停止す ることがあります。逆潮流発生時の発電停止を再現し、より詳細なシミュ レーションを行うことができます。



Solar Legatoとは

消費電力の変動に合わせてPCSの出力を自動制御する、特許技術を搭載し た発電制御システム。自家消費型太陽光発電での課題となっている逆潮流 の発生や過剰制御を解決し、発電電力の最大化を実現します。

蓄電池導入時の自家消費制御シミュレーション

自家消費制御の設備に蓄電池を導入した場合のシミュレーションにも 対応。発電電力と消費電力のバランスに合わせた PCS の制御ととも に蓄電池の充放電の制御もシミュレーション可能です。



∠ Solar Legato 自家消費型太陽光発電向け自動出力制御システム

■統合レポート

計算結果や設定内容、3D CAD 画像をまとめたレポートを作成できま す。計算結果から生成されたレポートが表示され、表示内容は PDF 化できます。また、統合レポート編集画面では、内容を編集・活用す ることも可能です。

- 9 -- 10 -

Solar Proのシミュレーション原理

Solar Proは発電電力量の瞬時値を 積算し、精度の高い結果を導き出します。

年間の計算は詳細計算と、簡易計算があります。また、計算間隔を1分単位で任意に選択できます。

■1年の発電量グラフ

■1日の発電量グラフ

PV温度 PV効率 外気温度

太陽電池アレイに入射する日射は直達、散乱光、地面反射光に分けて計算が行われます。 これにより太陽電池アレイがどのような向きに設置されていても、太陽電池アレイが受ける 日射の総量(傾斜面日射)を求めることができます。

A 温度の影響

日中のPV温度の上昇により、電圧が低下しています。温度による影響を電圧レベルで解析できます。

B影の影響

影の影響により、電流が低減している様子がわかります。刻一刻と 変化する影の影響を逐次計算に反映できます。

C PCS動作の反映

PCS の起動・停止条件、定格容量を超えたときの挙動 などを反映させることができます。

I-Vカーブから瞬間毎に求めた最大 電力点を、発電電力としてプロット Lます

I-V特性グラフの算出

電流と電圧の組み合わせからI-Vカーブを描き、最大電力点を求めます。

I-Vカーブ

I-V カーブは太陽電池モジュールや太陽光発電システムの性能を表す基本的なグラフです。Solar Pro では負荷抵抗の値を徐々に変化させることで、電流・電圧の可能な組み合わせを十分な細かさで算出し、I-V カーブを求めています。

P-Vカーブ

P-Vカーブは電力と電圧の関係を表しています。

9 3 2000 日 3 0 50 100 150 200 250 300 350 400 450

発電電力

最大電力点

P-Vカーブにより最大電力点を求めることで、その状態での動作電流・電圧を決定します。 ※PCS毎、ストリング毎、モジュール毎に最大電力点を算出(MPPT)できます。

_

算ではなく、瞬時値を積算

することで根拠のある正確

性の高い計算が可能。

モジュールの枚数分の連立方程式を 解き、電流・電圧の組み合わせを 求めます。

モジュール毎の計算

モジュール毎に日照や影の状態を考慮して電流方程式を立てます。

各モジュールの設置条件やモジュールの種類が異なるなどの状況に合わせて電流・電圧の組み合わせが導き出され、IVカーブが描かれます。従って、各直列の設置条件やモジュールが異なるなどの複雑な状況でも、正確に計算することが可能です。

計算式: I=Iph - Io[exp{C(V+IRs)}-1]-(V+IRs)/Rp

モジュールー枚一枚の状態と 結線を反映します。

影がかかっていないモジュールでも、結線でつながっている他のモジュールに影がかかっていることを考慮します。

- 12

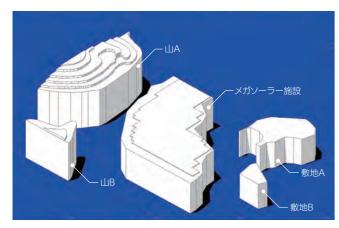
シミュレーション代行

代行サービスでパネル設置の計画をサポート

Solar Proでのシミュレーションを代行いたします。シミュレーション完了後は結果をまとめたレポートを提出いたします。お 気軽にご依頼ください。

※モジュールの結線を含め、最適設計を提供するものではございません。

Solar Pro O シミュレーションを 試したい


Solar Legato 導入時の効果を 確認してみたい

入り組んだ 場所での設計に 慣れていない

分かりやすい レポートで結果を 確認したい

影シミュレーション

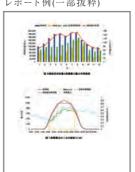
周辺の山の影がメガソーラー施設にどのような影響を及ぼすかを検証。 また、メガソーラー施設や山の影が、近隣の敷地にどのような影響を 及ぼすかも検証します。

レポート例(一部抜粋)

反射光シミュレーション

太陽電池パネルの傾斜角を10度と30度に設定し、太陽電池パネルの反 射光が周囲の建物にそれぞれどのように影響するかを比較検証します。

レポート例(一部抜粋)



自家消費制御シミュレーション

自家消費発電制御のシミュレーション機能を用いて、売買電電力量へ の Solar Legato の効果を検証します。

レポート例(一部抜粋)

シミュレーションしてみよう!

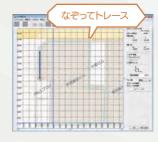
発電量グラフ、帳票、経済性グラフなどさまざまな視点から結果を確認できます。

下絵として地図を読み込む

建物を作成するための下地として、「地図読み込み機能」 でシミュレーションを行う建物の地図を読み込みます。

▶機能詳細はP.5

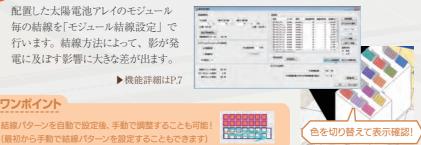
ワンポイント


DXFファイルや画像も読み込み可能!

建物を作成し、 太陽電池アレイを配置

読み込んだ地図の上から「伏図入力機能」で建物の 輪郭をトレースします。「自動アレイ配置機能」で太陽電 池アレイが配置され、簡単に建物が完成します。

▶機能詳細はP.5


ワンポイント

伏図を使わずに、実際の建物のイメージに近い入力形状を 選択して設置することもできます。

モジュールの結線パターンを設定

配置した太陽電池アレイのモジュール 毎の結線を「モジュール結線設定」で 行います。結線方法によって、影が発 電に及ぼす影響に大きな差が出ます。

▶機能詳細はP.7

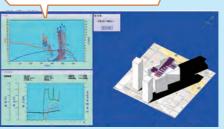
ワンポイント

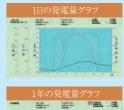
アレイは自動で配置した後に、 手動で調整することも可能!

ワンポイント

周囲の建物を作成

STEP2の手順と同様に、「伏図入力 機能」や「入力形状の選択」を使って、 周囲の建物を作成。


▶機能詳細はP.5



影のシミュレーションの際は、 STEP2で作成した建物よりも 高い建物を周囲に作成します。

シミュレーション結果の確認

